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COMMENT 

On the number of lattice animals embeddable in the square 
lattice 

A J Guttmannt 
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, 
USA 

Received 3 February 1982 

Abstract. Enumeration of lattice animals embeddable in a square lattice has recently 
been extended to 24 cell animals by Redelmeier. It is shown that the number of animals 
per site a, is given by a, -0.317(4.0626)"n-' exp(-0.465 n-0'87) to a high degree of 
accuracy. 

1. Introduction 

In this comment, we give some refined numerical estimates of the critical parameters 
in the general asymptotic form for the number of site animals per site of the square 
lattice. The asymptotic form is that first proposed by Domb (1976), who suggested 
that a, -AA%-' exp(-Fn'-e), where a, is the number of n-cell site animals per site, 
and A, A, 7, F and 0 are constants. This form was proposed by Domb in order to 
explain the relatively slow convergence of the sequence {a , }  when extrapolated under 
the assumption that a, -AA" n-' (Sykes and Glen 1976). Domb's asymptotic form 
was subsequently used by Guttmann and Gaunt (1978), who showed that, for all 
available bond and site animal series in both two and three dimensions, Domb's form 
appeared to fit the data better than the simpler form used by Sykes and Glen (1976), 
corresponding to F = 0. 

Since that time, two important developments have taken place. Firstly, Domb's 
expression has received additional theoretical support (see Harris and Lubensky 198 1 
and references therein), and the square lattice site animal series has been extended 
by a full five terms (Redelmeier 1981) up to and including a24  in a computation that 
took ten months of CPU time on a PDP 11/70, using a highly efficient algorithm. We 
note in passing, that Redelmeier is concerned by a discrepancy between his value of 
a17 and that of Lunnon (1971). However, his value is confirmed by Sykes and Glen 
(1976), so it is clear that Lunnon's coefficient is in error. 

As in most non-trivial enumeration problems, there are very few exact results and 
a number of bounds. The most significant exact result is due to Klarner (1967) who 
showed that 

lim n-l In u, = sup n-l In a,  =In A. 
n >O n - a  

These site animals are also called fixed polyominoes, to distinguish them from ffee 
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polyominoes. They differ in that free polyominoes are not considered distinct if they 
differ only in orientation. Thus , ELI are two distinct fixed polyominoes (hence 
a2 = 2), while they represent the same free polyomino (hence p2 = l ) ,  where p ,  denotes 
the number of n-cell free polyominoes per site. Klarner (1967) was also able to show 
that (1) holds for free polyominoes-with p ,  replacing a,-while Lunnon (1971) 
showed that, for the square lattice, a, -8p,. As pointed out by Whittington and 
Gaunt (1978) this asymptotic relation is rapidly reached, as by n = 18 we have 
an/pn = 7.99919 . , . . Since Redelmeier also enumerated the number of free poly- 
ominoes up to and including n = 24, we now find a24/p24 = 7.999986. . . . Several 
authors have given rigorous bounds on A. Eden (1961) gave 3.14<A <4,  but his 
proof of the upper bound is false-and indeed the upper bound is not an upper bound 
at all. Klarner (1967) proved that 3.722<A c6 .75 ,  while Lunnon (1971) reports an 
unpublished result of Conway and Guy-which he had not seen-that allegedly 
established the result A <4.5. The best published upper bound is due to Klarner and 
Rivest (1973), who obtained A <4.65. In 1978 Whittington and Gaunt studied the 
general d-dimensional polyomino problem and showed that In A ( d )  3 m-’ In[da, (d ) ] .  
Using the last coefficient obtained by Redelmeier, a24, we get the bound A (2) > 3.487, 
which is weaker than Klarner’s (1967) result. To improve on Klarner’s result using 
the lower bound of Whittington and Gaunt would require knowledge of ~ 3 2 ,  which 
is computationally quite unrealistic using any known algorithm. A more feasible 
approach would be to sharpen the lower bound. If it could be proved that In A (2) 3 

m In[ka,], with k 29.6 ,  then Redelmeier’s last coefficient, 024 ,  would suffice to 
improve Klarner’s lower bound. Probably the only way to improve k so substantially 
would be to prove the result In A 2 m-l ln[ma,], which we expect to be true, though 
we have been unable to establis4 a proof, and which would give A > 3.868. 

Turning now to the asympt )tic form assumed by Domb, there have been several 
subsequent studies of the average number of clusters in the general percolation problem 
(Harris and Lubensky 1981, Lubensky and McKane 1981 and references therein), 
and Harris and Lubensky have demonstrated the nature of the crossover between 
cluster distribution functions in the percolation problem and the animal problem. 
These studies collectively provide substantial backing for Domb’s asymptotic form. 

Assuming Domb’s form, the next section comprises an analysis of Redelmeier’s 
fixed animal data, while the last section contains a discussion of the results obtained. 
For completeness, we list the five new coefficients a19-a24. They are 22 964 779 660, 
88 983 512 783,345 532 572 678, 1344 372 335 524,5239 988 770 268. 

-1  

2. Analysis of series 

Following the earlier procedure of Guttmann and Gaunt (1978), we have fitted 
successive quintuplets of coefficients an-4, an-3, a,-2, a,-l, a, to the functional form 
a, = AA “n-‘ exp(-Fn which gives sequences of estimates of the five unknowns 
A,  A, T, F and 8. By straightforward algebraic manipulation, the resulting five nonlinear 
equations obtained at each order can be arranged to give a nonlinear equation of a 
single variable (e) ,  which is readily found by Newton’s method. The remaining 
parameters are then obtained by back substitution. 

In table 1 we show the last 11 estimates of the five parameters for the case of 
fixed polyominoes (site animals). It can be seen that only for n 2 19 do the sequences 
‘settle down’ to regular behaviour, so the additional terms obtained by Redelmeier 
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Table 1. Results of a five-parameter fit to the square lattice site animals. 

n 7 A A F e 
~ 

14 0.9002 
15 0.7838 
16 1.0530 
17 1.2141 
18 1.1883 
19 1.0432 
20 1.0209 
21 1.0185 
22 1.0134 
23 1.0092 
24 1.0075 

4.041 64 
4.079 46 
4.063 83 
4.065 92 
4.065 75 
4.063 80 
4.063 18 
4.063 10 
4.062 94 
4.062 81 
4.062 75 

0.2486 
0.2917 
0.4287 
0.1967 
0.1441 
0.3998 
0.3526 
0.3481 
0.3392 
0.3323 
0.3294 

0.000 - 
0.210 
0.649 
2.149 
1.839 
0.591 
0 487 
0.478 
0.462 
0.452 
0.449 

-1.866 
0.607 
1.421 
1.185 
1.203 
1.473 
1.598 
1.617 
1.660 
1.703 
1.723 

are quite invaluable for estimating the critical parameters. Linear, quadratic and 
logarithmic extrapolation was employed, and collectively allow us to estimate T = 
1.00*0.02, A =4.0625*0.001, A=0.32*0.02, F=0.43*0.04, 8=1.80*0.15. 
These estimates are significantly more precise than those obtained by Guttmann and 
Gaunt (1978) with shorter series, the width of the confidence limits having been 
reduced by a factor of about five, while unbiased estimates of A and F have been 
made for the first time. In particular, the assumption that T = 1 made by Guttmann 
and Gaunt is seen to be particularly well supported. 

If we now fix T = 1.0, a result held to be exact (Parisi and Sourlas 1981), we can 
fit successive quadruplets of coefficients to the assumedform a, = AA “n-’ exp(-Fn 
Again, simple algebra allows us to recast the equations into an equation which is 
nonlinear in a single variable (6). The results are shown in table 2, where it can be 
seen that good convergence is only achieved for n > 17. From these sequences, we 
obtain the biased estimates A = 4.0626 f 0.0002, A = 0.317 f 0.003, F = 0.465 f 0.02 
and e = 1.87fO.06. These are in agreement with the earlier biased estimates of 
Guttmann and Gaunt, but display a level of precision of between three and ten times 
greater. In particular, it appears that 8 = 1; is a useful mnemonic. 

Table 2. Result of a four-parameter fit to the square lattice site animals (7 assumed to be 1). 

n A A F O 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

4.061 37 
4.061 86 
4.061 98 
4.062 15 
4.062 30 
4.062 37 
4.062 41 
4.062 44 
4.062 47 
4.062 48 
4.062 49 

0.325 44 
0.322 32 
0.321 60 
0.320 45 
0.319 45 
0.318 96 
0.318 68 
0.318 44 
0.318 27 
0.318 15 
0.318 06 

0.3900 
0 4013 
0.4055 
0.4143 
0.4246 
0.4309 
0.4351 
0.4393 
0.4427 
0.4454 
0.4477 

1.654 
1711 
1.727 
1.754 
1.781 
1.796 
1.805 
1.813 
1.820 
1.824 
1.828 
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3. Discussion 

The excellent convergence that has been observed in the foregoing extrapolations 
lends considerable support to Domb's proposed asymptotic form. This double 
exponential form is particularly sensitive to small errors in coefficients, and to numerical 
rounding, so the convergence observed also establishes the essential correctness of 
the coefficients. The sensitivity of the asymptotic form assumed can perhaps best be 
seen by considering the free polyominoes. As we have mentioned, the expression 
a, - Bp, deviates from equality by less than one part in lo6 for n = 24, yet the free 
polyominoes are totally unextrapolable under these same assumptions. The reason 
appears to be related to the lattice structure of the loose-packed lattice used, the 
effects of the oscillations characteristic of loose-packed lattices being apparently 
sufficient to mask the very weak exponential factor exp(-Fn'-') in the case of free 
polyominoes. 

Recently, considerably attention has been given to the possible presence of 
confluent logarithmic terms in the singularity structure of a number of percolation 
series (see e.g. Adler and Privman 1981). Attempts to determine such confluent 
terms have not been particularly successful. The results obtained here, together with 
the demonstrated connection between lattice animals and percolation clusters (Harris 
and Lubensky 1981), suggest that perhaps attention should be paid to the possibility 
of less common exponential-type confluent terms in the case of percolation functions. 
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